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Abstract: The problem of aircraft trajectory planning is formulated as a hybrid optimal control
problem. The aircraft is modeled as a switched system, that is, a class of hybrid dynamical
systems. The sequence of modes, the switching times, and the inputs for each mode are the
control variables. An iterative bi-level optimization algorithm is employed to solve the optimal
control problem. At the lower level, given a pre-defined sequence of flight modes, the optimal
switching times and the input for each mode are determined. This is achieved by extending the
continuous state to include the switching times and then solving a conventional optimal control
problem for the extended state. At the higher level, the algorithm modifies the mode sequence
in order to decrease the value of the cost function. We illustrate the utility of the problem
formulation and the solution approach with two case studies in which short horizon aircraft
trajectories are optimized in order to reduce fuel burn while avoiding hazardous weather.

Keywords: Optimal Control, Hybrid Systems, Aircraft Operations, Aircraft Trajectory Design

1. INTRODUCTION

A substantial change in the current Air Traffic Manage-
ment (ATM) paradigm is needed in order to improve its
capacity, efficiency, environmental impact, and flexibility.
This need for paradigm shift is being addressed in Eu-
rope within the framework of Single European Sky ATM
Research (SESAR) 1 , and in the United States within
the Next Generation (NextGen) of air transportation sys-
tem 2 . Currently, ATM imposes certain trajectory restric-
tions in order to guarantee safety. Some of these restric-
tions result in non-minimal fuel consumptions and conse-
quently higher operative costs and emissions. A new con-
cept on 4D trajectory planning, referred to as Trajectory
Based Operations (TBO), is being developed in order to
allow optimization of individual aircraft trajectories while
ensuring that the airspace is used safely and efficiently.

? The authors would like to thank all members of the Air Traffic
Control group at ETH Zurich for fruitful and interesting discussions.
This work was partially supported by AFOSR under grant FA9550-
06-1-0312 and by the National Science and Engineering Research
Council of Canada (NSERC); by the Spanish Government under
ATLANTIDA project, and the European Union’s FP7 for the Clean
Sky JTI under grant 270624; and the European Commission under
the project iFly, FP6-TREN-037180.
1 SESAR Master Plan: http://www.eurocontrol.int/sesar
2 NextGen. Concept of operations for the next generation air trans-
port system, 2007: http://www.jpdo.gov/library/NextGen v2.0.pdf

We present an approach to the problem of finding aircraft
fuel optimal trajectories in the presence of wind and
weather storms. In our approach different flight modes and
operational procedures are combined in order to formulate
and solve an optimal control problem. The coupling of
the discrete flight modes with the continuous aircraft
dynamics results in a hybrid system, Tomlin et al. (1998);
Glover and Lygeros (2004); Ross and D’Souza (2005).

The flight dynamics of an aircraft intrinsically has the
characteristics of a switched system, that is, a hybrid
system in which there are no discontinuous state jumps
at the switching times. Switches between flight modes can
be autonomous or controlled. Autonomous switches take
place when the continuous state hits prescribed regions of
the state space. For example, when the aircraft reaches a
prescribed altitude a switch from climb mode to cruise
mode of flight would occur. Controlled switches occur
in response to a control input. The control input for a
hybrid system has both a discrete component, which is
the sequence of the discrete modes, and two continuous
components, which are the duration of each mode and the
input for each mode. In general, finding all components of
the solution to a hybrid optimal control problem is hard
because it is difficult to determine the optimal sequence of
discrete modes in a computationally efficient manner.
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Hybrid optimal control problems with a known mode
sequence have been frequently formulated in aerospace
engineering as multi-phase problems, Huntington and Rao
(2005); Jorris and Cobb (2008). Here, a phase refers to a
mode of the hybrid dynamics. The multi-phase problems
are usually solved using pseudospectral methods and some
have been applied to spacecraft missions, Benson (2004);
Ross and Fahroo (2004); Thorvaldsen et al. (2005). How-
ever, none of the above research has focused on commercial
aircraft. Another approach to solve a hybrid optimal con-
trol problem with a known mode sequence was presented
in Soler et al. (2010a) and two applications to commercial
aircraft trajectory optimization were derived, in which
vertical profiles, Soler et al. (2010c), and 3D profiles,
Soler et al. (2010b), were optimized with respect to fuel
consumption. In this approach the hybrid optimal control
problem was converted into an equivalent conventional
optimal control problem by making the unknown switching
times part of an extended continuous state using a method
similar to that in Žefran (1996); Xu and Antsaklis (2004).

Although the sequence of modes in the current paradigm
of flight is fixed a priori by the pilots or the air traffic
controllers, variation of this sequence may improve the
objective, which is for instance minimization of fuel con-
sumption. In addition, given some stochastic phenomenon
such as storms, there may be a need to update the original
sequence of flight modes in order to tackle the uncertainties
in a safe and optimal way. To address these problems,
algorithms for hybrid optimal control with a variable mode
sequence need to be used. There has been much previous
work on optimal control of a hybrid system with an un-
known mode sequence, for example, see Branicky et al.
(1998); Shaikh and Caines (2007); Axelsson et al. (2008);
Zhang et al. (2009); González et al. (2010). The previous
studies do not consider the application of optimal aircraft
trajectory design. Motivated by the possible gains of vary-
ing the flight mode sequence, this study applies a hybrid
optimal control algorithm to address commercial aircraft
trajectory optimization with a variable mode sequence.

The paper is organized as follows: In Section 2 the hybrid
optimal control problem is defined and our algorithm is
described. In Section 3 the equations of motion for the
flight modes considered are provided. In Section 4 we apply
the proposed algorithm to two aircraft trajectory design
problems. Finally, in Section 5 conclusions and directions
for future research are stated.

2. HYBRID OPTIMAL CONTROL APPROACH

Aircraft motion has the characteristic of a switched sys-
tem due to different flight modes. A switched system is
composed of a set of dynamical systems described by
differential equations

ẋ(t) = fq(x(t), u(t)), q ∈ Q = {1, 2, . . . , Nq}, (1)

where x ∈ IRn represents the continuous state and
Q represents the discrete modes of the system. The
input u belongs to set of functions {u : [0,∞) →
U |u is measurable}, with U ⊂ IRm a compact set.

A switching sequence σ is defined as the timed sequence of
active dynamical systems, referred to as modes, as follows:

σ = [(tI , q0), (t1, q1), . . . , (tN , qN )], (2)

where N ∈ N+, tI ≤ t1 ≤ · · · ≤ tN ≤ tF , and
qi ∈ Q for i = 0, 1, . . . , N . The pair (ti, qi) indicates
that at time ti the dynamics change from mode qi−1 to
qi. Consequently, in the time interval [ti, ti+1) the system
evolution is governed by the vector field fqi .

The hybrid optimal control problem can be stated as
follows: consider the switched system (1) whose state
and inputs are subjected to a set of Nc constraints for
t ∈ [tI , tF ] given as

hj(x(t), u(t)) ≤ 0, j = 1, 2, . . . , Nc. (3)

Find a switching sequence σ and an input u, that fulfill
(1), the path constraints (3), and minimize the objective

J(σ, u) = φ(x(tF )) +

∫ tF

tI

L(x(t), u(t))dt. (4)

The term L is referred to as the Lagrangian running cost
and φ as the final cost. The final time tF may be fixed in
advance or may be an optimization parameter. We assume
that fq, hj , φ, and L are Lipschitz and differentiable and
their derivatives are also Lipschitz in their arguments. To
address this problem we consider the following iterative
bi-level algorithm, González et al. (2010):

Bi-Level Hybrid Optimal Control Algorithm

Stage 1: Given a mode sequence, (q0, q1, . . . , qN ), find the
optimal continuous input u, the optimal switching
times (t1, . . . , tN ), and the final time tF . From the
switching times obtain the switching sequence σ.

Stage 2: Find a new sequence σ̃ as a result of insertion of
a new mode into the original sequence σ, which
would decrease the cost. If such mode cannot be
found, stop. Else, repeat Stage 1 using σ̃.

In general, the algorithm leads to suboptimal solutions
since only certain variations of the discrete mode sequence,
that is, mode insertions, are considered. However, it pro-
vides a systematic and computationally efficient manner
of examining candidate mode sequences. Next, we describe
our approach for solving each stage of the algorithm.

2.1 Solving Stage 1

In this stage of the algorithm the number of switches
and the sequence of discrete modes are known. The idea
is to convert the hybrid optimal control problem with
known mode sequence but unknown switching times into
an equivalent optimal control problem with an extended
state and known switching times, Žefran (1996); Xu and
Antsaklis (2004). Without loss of generality, we can assume
tI = 0. Define t0 = 0 and tN+1 = tF . First, we introduce
new state variables xn+1+i corresponding to the switching
times ti, i = 0, . . . , N and with dynamics ẋn+1+i = 0. We
then introduce a new independent variable τ ∈ [0, N + 1].
The relation between τ and t is as follows:

t =

{
xn+1τ τ ∈ [0, 1]

xn+i+1(τ − i)− xn+i(τ − i− 1) τ ∈ [i, i+ 1],

where in the above, 1 ≤ i ≤ N . Let (·)′ denote the
derivative of (·) with respect to the new independent

variable τ . Next, define f̂qi as

f̂qi =

{
xn+1fq0 i = 0

(xn+i+1 − xn+i)fqi i = 1, . . . , N
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The reformulated optimal control problem in the extended
state is as follows:

minφ (x(N + 1)) +

∫ N+1

0

L(x(τ), u(τ))dτ (5)

subject to

x′(τ) = f̂qi(x(τ), u(τ)), τ ∈ [i, i+ 1], i = 0, . . . , N

x′n+1+i(τ) = 0, i = 0, . . . , N

hj(x(τ), u(τ)) ≤ 0, j = 1, . . . , Nc

Let x̂ = [x1, . . . , xn, xn+1, . . . , xn+1+N ]T denote the ex-
tended state. In the optimal solution of the above problem,
(x̂∗, u∗), the last N + 1 components of the state x̂∗ are
the N optimal switching times and the final time. Since
the duration of each mode is constant with the introduced
transformation, the new equivalent problem is a conven-
tional optimal control problem, that is, an optimal control
problem without unknown switching times. In order to
solve the optimal control problem above a collocation
method may be used, Hargraves and Paris (1987); Herman
and Conway (1996). Collocation methods have been widely
used for solving optimal control problems in the aircraft
and aerospace applications due to their computational
efficiency, see, for instance, Betts (1998, 2001). The main
drawback on such methods is that they only ensure local
optimality for the discretized problem and there is a need
to verify optimality a posteriori, Yan et al. (2000).

2.2 Solving Stage 2

The difficulty with determining the discrete modes in a
hybrid optimal control problem is that the trajectories
obtained from variations of a given mode sequence may
be far from the nominal one and hence not comparable
in a computationally efficient manner. However, if one
considers a variation in which the modified sequence differs
from the original one by modes whose durations are
sufficiently small, one can then analyze the differences
in the resulting trajectory and cost function. This idea
was introduced in Axelsson et al. (2008) for autonomous
unconstrained switched systems. It was extended to non-
autonomous constrained switched systems in González
et al. (2010). We give a high-level description of this
approach. For details please refer to González et al. (2010).

Consider the switched system described in Section 2.
Define insertion of mode α ∈ Q at a time t̂ ∈ [tI , tF ] for a
duration λ > 0 as a modification to the mode sequence σ
and input u such that the subsystem fα(x, û) is active in
the interval (t̂ − λ

2 , t̂ + λ
2 ). This mode insertion can be

characterized by η = (α, t̂, û) ∈ Q × [tI , tF ] × U . The
resulting discrete and continuous inputs are denoted as
(σ̂, û). Let ρη : λ→ (σ̂, û) be a function that describes this
insertion. Now, we can consider variation of the cost with
respect to this mode insertion in the limit as λ approaches
zero. To do this, define the directional derivative

dJ
(
ρ(η)(λ)

)
dλ

∣∣∣∣∣
λ=0

= lim
λ↓0

J
(
ρ(η)(λ)

)
− J(σ, u)

λ
.

If the above directional derivative is negative, then, for
sufficiently small insertion duration λ the mode inser-
tion would decrease the cost. Additionally, we need to
ensure that after the mode insertion the constraints will

not be violated. Here, to ensure existence of directional
derivative of the path constraints, we assume they are of
the form hj(x(t)) ≤ 0, j = 1, . . . , Nc. Define ψ(σ, u) =
maxhj(x(t)), where the maximum is with respect to j =
1, 2, . . . , Nc and t ∈ [tI , tF ]. To ensure feasibility of con-

straints it is sufficient to have dψ(ρ(η)(λ))
dλ

∣∣∣
λ=0

< 0 whenever

ψ(σ, u) = 0. Note that the directional derivatives are well-
defined, Polak (1997), and analytical expressions for them
are derived in González et al. (2010).

Based on the analysis for the variations of the cost and
the constraints with respect to the mode insertion Stage
2 of the algorithm selects a mode α, an insertion time t̂,
and an input û which minimizes the directional derivative
of cost with respect to mode insertion while ensuring that
constraints remain feasible. The resulting mode insertion
characterized by η can be stated as the solution of the
following optimization problem:

min
η

max

{
dJ(ρ(η)(λ))

dλ

∣∣∣∣
λ=0

, ψ(σ, u) +
dψ(ρ(η)(λ))

dλ

∣∣∣∣
λ=0

}
.

To implement Stage 2, one would solve the optimization
above for every candidate mode α ∈ Q over the variables
t̂ and û. If the objective function is negative for some η
then a mode insertion which would decrease the cost while
maintaining constraint feasibility exists and can be found
as a solution of the above optimization.

Once the mode to be inserted and its associated insertion
time are determined, a new mode sequence is obtained.
Then, Stage 1 is used to optimize the switching times
and continuous input given this new mode sequence. The
iteration between Stage 1 and 2 is continued until no
mode insertion can be found to decrease the cost. For
detailed analysis on convergence of the algorithm please
see González et al. (2010).

3. AIRCRAFT DYNAMICS

In order to design fuel optimal aircraft trajectories, it
is common to consider a 3 Degree Of Freedom (DOF)
dynamic model that describes the point variable-mass
motion of the aircraft over a flat earth model. Wind
is also included due to its considerable effects on fuel
consumption. The equations of motion of the aircraft are

mV̇ = T −D −mg sin γ (6)

mV (χ̇ cos γ cosµ− γ̇) =mg sinµ cos γ

mV (χ̇ cos γ sinµ+ γ̇) =L−mg cosµ cos γ

ẋ= V cos γ cosχ+ Vwindxh

ẏ = V cos γ sinχ+ Vwindyh

ḣ= V sin γ + Vwindzh

ṁ=−Tη

In the above the three kinematic equations are expressed in
a ground based reference frame, while the three dynamic
equations are expressed in an aircraft-attached reference
frame. The states are: V , χ, γ referring to the true
airspeed, heading angle, and flight path angle respectively;
x, y, h referring to the aircraft 3D position; and m its mass.
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Vwindxh , Vwindyh , Vwindzh are components of the wind, T
is the thrust, and µ is the bank angle. Lift L = CLSq̂ and
drag D = CDSq̂ are the components of the aerodynamic
force, where S is the reference wing surface area and
q̂ = 1

2ρV
2 is the dynamic pressure. A parabolic drag

polar CD = CD0 + KC2
L and a standard atmosphere are

assumed. In general, the bank angle µ the engine thrust
T and the coefficient of lift CL are the inputs. The path
constraints are based on aircraft’s flight envelope and can
be found in BADA manual, Nuic (2005). For further details
on aircraft dynamics see, for instance, Hull (2007).

3.1 Flight Modes

A 3D flight plan can be subdivided into a sequence modes
pertaining to flights in a vertical or horizontal plane. In
both cases, we consider a symmetric flight, that is, we
assume there is no sideslip and all forces lie in the plane
of symmetry of the aircraft. Also, we neglect the vertical
component of wind Vwindzh due to its low influence.

3.1.1 Horizontal 2D flight In the horizontal flight ḣ and
γ are set to zero. Consequently, the following algebraic
constraint is now present: L = mg cosµ. We consider two
modes in the horizontal flight. In mode 1, control speed, it
is assumed that the aircraft fly with constant heading but
with variable speed. The engine thrust T is the input and
the bank angle µ is set to zero. In mode 2, control heading,
the speed is set to a constant value and the input is µ.

3.1.2 Climb/Descent flight In this mode the bank angle
µ is set to zero. Without loss of generality, we consider
χ = 0, ẏ = 0. The engine thrust and the lift coefficient are
the inputs of the aircraft, that is, u = (T,CL). We refer to
this mode as mode 3, the control altitude mode.

4. AIRCRAFT TRAJECTORY OPTIMIZATION

We consider aircraft en-route portion of the flight. In
general, in this portion of the flight aircraft fly straight
line segments connecting waypoints. For the purpose of
avoiding hazardous weather, the aircraft may be required
to deviate from their nominal paths. In terms of air traffic
control, these deviations are characterized by maneuvers
which may consist of heading, speed, or altitude changes.
In our analysis, we consider flight maneuvers as modes of
the switched system and consider maneuvers character-
ized by the three modes of control speed, control heading,
and control altitude as introduced in the previous section.
These types of maneuvers are routinely used in the current
air traffic control practice since they are easily communi-
cated to the pilots and are easily implemented by auto-
pilots, Tomlin et al. (1998).

We assume a region of airspace is unsafe to fly through
due to weather storms. In the weather forecast data,
storms may be characterized as regions with high values of
Vertically Integrated Liquid (VIL), Wolfson et al. (2004).
Although the VIL forecast are provided for a gridded
airspace, a minimum-volume bounding ellipsoid can be
used to capture these no-fly zones as obstacles, Kamgar-
pour et al. (2010). Given a nominal path for the aircraft
and an obstacle along the path we formulate the problem
of obstacle avoidance as a hybrid optimal control problem.

In this set-up, a mode (or equivalently a maneuver) needs
to be inserted in the current flight plan in order to avoid
the obstacle while minimizing objectives.

For the following two case studies, we solved the trajectory
design problem using the bi-level algorithm of Section
2. To solve Stage 1, the transformation introduced in
Section 2.1 was applied. A fixed number of sample points,
Ns = 40, for each mode was chosen and an Euler (case
study 1), or Simpson (case study 2) discretization of
the dynamics was used. The equations of motion were
enforced at each sample point for each mode. For example,
for Euler discretization, the nonlinear equality constraint
x(k + 1) − x(k) − δifqi(x(k), u(k)) = 0 was enforced at
the sampling points. The step-size δi was scaled based on
duration of mode i, that is, δi = ti+1−ti

Ns
. The resulting

sparse nonlinear programming problem was solved using
TOMLAB SNOPT optimization software 3 . To solve Stage
2, the algorithm developed in González et al. (2010) was
applied. The running time for both case studies were below
2 minutes on a 2.56 GHz laptop with 4 GB RAM. So both
examples could be computed onboard.

4.1 Case 1 - Obstacle avoidance in horizontal 2D flight

We assume the aircraft is cruising at a constant altitude of
11000 meters. We used NOAA 4 wind forecast of July 6th,
2010. A 4th degree polynomial, with the appropriate study
of the residual and the regression coefficients statistical
significance, was fitted to the wind data.

The equations of motion are presented in (6) with the
hypothesis of Subsection 3.1.1. There are two modes for
the horizontal flight. In mode 1, control speed, the aircraft
is flying with constant heading angle and hence the input
µ is set to zero and the only control input is the thrust T .
For this mode the states with dynamics are V , x, y, and m.
In mode 2, control heading, the speed is held constant by
setting the thrust equal to the drag, T = D, and the input
is µ. The state with dynamics are χ, x, y, m. The aircraft
needs to reach a target point zd ∈ IR2 while avoiding the
hazardous weather obstacle. Let xpos be the 2D position
of the aircraft. The objective consists of a final cost term
which is a weighted sum of the distance from the target
point, the cost of fuel consumption, and the final time to
reach the target point and is given as

J(σ, u) = Kd||xpos(tF )− zd||2 −Kmm(tF ) +KttF .

The weights were set to Kd = 10, Km = 0.5, and Kt = 0.1.
The aircraft path was initialized as a straight line segment
connecting the initial position of (−3154, 5018) km to the
final desired position of (−2754, 5018) km. The weather
obstacle was centered at (−3054, 5018) with a radius of 20
km. The algorithm was initialized in mode 2. In the first
iteration, Stage 1 of the algorithm returned an optimal
path in which the obstacle was avoided by flying around
it. Next, Stage 2 of the algorithm determined that an
insertion of mode 1 at time 121 seconds would result in
reduction of cost while ensuring feasibility of the path. The
second iteration of Stage 1 of the algorithm, now initialized
with mode sequence (2, 1, 2) resulted in a reduced cost and

3 SNOPT: an SQP algorithm for Large-Scale Constrained Optimiza-
tion, www.sbsi-sol-optimize.com
4 http://www.noaa.gov/
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a modified path. Figure 1 shows the aircraft path and the
inputs. The numerical results are summarized in Table 4.
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Fig. 1. In the optimal 2D aircraft trajectory, the speed is
increased immediately in the control speed mode, and
then the turn maneuver around the obstacle is carried
out in the control heading mode to avoid the obstacle.

iteration 1 iteration 2
mode sequence (2) (2,1,2)
switching times (1622) (29.52, 379.68, 1504.2)
cost 214.23 202.97

Table 1. Optimization results for Case 1

This case study indicates that given a pre-defined path
of aircraft that is designed to avoid the obstacle using
only a turn maneuver, the objective function can be
reduced by including a straight flight maneuver, through
the application of control speed mode at an appropriate
time, and by increasing the speed to an optimal value for
an optimal duration of time.

4.2 Case 2 - Obstacle avoidance in variable altitude flight

It is assumed that the aircraft can be in three possible
modes of 1 control speed, 2 control heading, 3 control alti-
tude defined previously. In the first two modes where the
altitude is held constant, the hypothesis of Subsection 3.1.1
hold. In control altitude mode, the inputs and equations
of motion are modified based on the hypothesis in Section
3.1.2. For this mode, the states with dynamics are V ,
χ, γ, x, h, and m. In this case study, for the sake of
simplicity in optimization, wind is not taken into account.
Let xpos = (x, y, h) denote the aircraft position in 3D and
zd ∈ IR3 denote the desired aircraft position. The cost
function is

J(σ, u) = Kd||xpos(tF )− zd||2 −Kmm(tF ) +KttF .

The weights in the objective, and initial and final state of
the aircraft were set to that of the previous case study. The
weather obstacle was set to an ellipsoid in 3 dimensions,
centered at (−2854, 5018, 11000), with an axis length of 20
km in the horizontal plane and 100 meters in the vertical
plane.

In this case study, Euler integration did not provide good
results due to nonlinearities in the Climb/Descent flight
dynamics. Consequently, a Simpson collocation method,
as described in Hargraves and Paris (1987), was used to
solve Stage 1. The mode sequence was initialized at the
control heading mode. In the first iteration of Stage 1,
the algorithm resulted in an optimal solution in which the
aircraft avoided the obstacle by flying around it, similar
to the maneuver in the previous case study. Stage 2 of the
algorithm found that an insertion of mode 3 at time index
of 36 seconds would reduce the cost while maintaining fea-
sibility. Then, in the second iteration of Stage 1, initialized
with mode sequence (2, 3, 2), the aircraft gradually climbed
to the maximum allowable altitude of 11500 meters and
avoided the obstacle by remaining at the high altitude. At
the very last portion of flight, it quickly descended to the
desired final point. Figure 4.2 shows the aircraft path and
the inputs. The inputs for mode 2 are not shown due to
the small duration of this mode. The numerical results are
summarized in Table 4.2.

This case study indicates that it is optimal to avoid the
obstacle by flying at a higher altitude. This is consistent
with the knowledge that there is less drag at higher
altitudes due to reduced air density. Also, the comparison
of the two case studies indicates that inclusion of wind in
Case 1 results in reduced cost compared to Case 2 since
the optimization was able to find a wind optimal path.
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Fig. 2. In the optimal 3D aircraft trajectory, the aircraft
remains at high altitude to avoid the obstacle.

iteration 1 iteration 2
mode sequence (2) (3,2)
switching times (1828) (1705, 1728)
cost 241.61 227.09

Table 2. Optimization results for Case 2

5. CONCLUSIONS

We motivated the problem of hybrid optimal control for
aircraft trajectory design and described our algorithm for
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addressing this problem. Two applications on aircraft tra-
jectory optimization were formulated in this framework
and successfully solved. Based on the case studies, we
propose several possible applications for the hybrid op-
timal control formulation and the bi-level algorithm. At
the strategic level, given a predefined sequence of modes
that define the flight plan, the algorithm can be utilized
to provide modifications to the mode sequence such that
gate to gate 4D trajectory is optimized. At the opera-
tional level, the modification of planned trajectories due
to appearance of stochastic phenomenon such us storms,
potential collision, or the appropriate sequencing of air-
craft at top of descent for starting a Continuous Descent
Approach, is currently addressed by an ad-hoc redefinition
of the flight plan. This algorithm will be able to tackle
such modifications through optimal maneuver insertions.
However, to address the complexity in such realistic prob-
lems due to presence of multiple aircraft, it is necessary to
further explore different integration schemes, Non Linear
Programming (NLP) solvers, and programing languages.
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